177 research outputs found

    Complexity of colouring problems restricted to unichord-free and \{square,unichord\}-free graphs

    Full text link
    A \emph{unichord} in a graph is an edge that is the unique chord of a cycle. A \emph{square} is an induced cycle on four vertices. A graph is \emph{unichord-free} if none of its edges is a unichord. We give a slight restatement of a known structure theorem for unichord-free graphs and use it to show that, with the only exception of the complete graph K4K_4, every square-free, unichord-free graph of maximum degree~3 can be total-coloured with four colours. Our proof can be turned into a polynomial time algorithm that actually outputs the colouring. This settles the class of square-free, unichord-free graphs as a class for which edge-colouring is NP-complete but total-colouring is polynomial

    The Cost of Perfection for Matchings in Graphs

    Full text link
    Perfect matchings and maximum weight matchings are two fundamental combinatorial structures. We consider the ratio between the maximum weight of a perfect matching and the maximum weight of a general matching. Motivated by the computer graphics application in triangle meshes, where we seek to convert a triangulation into a quadrangulation by merging pairs of adjacent triangles, we focus mainly on bridgeless cubic graphs. First, we characterize graphs that attain the extreme ratios. Second, we present a lower bound for all bridgeless cubic graphs. Third, we present upper bounds for subclasses of bridgeless cubic graphs, most of which are shown to be tight. Additionally, we present tight bounds for the class of regular bipartite graphs

    On decision and optimization (k,l)-graph sandwich problems

    Get PDF
    AbstractA graph G is (k,l) if its vertex set can be partitioned into at most k independent sets and l cliques. The (k,l)-Graph Sandwich Problem asks, given two graphs G1=(V,E1) and G2=(V,E2), whether there exists a graph G=(V,E) such that E1⊆E⊆E2 and G is (k,l). In this paper, we prove that the (k,l)-Graph Sandwich Problem is NP-complete for the cases k=1 and l=2; k=2 and l=1; or k=l=2. This completely classifies the complexity of the (k,l)-Graph Sandwich Problem as follows: the problem is NP-complete, if k+l>2; the problem is polynomial otherwise. We consider the degree Δ constraint subproblem and completely classify the problem as follows: the problem is polynomial, for k⩽2 or Δ⩽3; the problem is NP-complete otherwise. In addition, we propose two optimization versions of graph sandwich problem for a property Π: MAX-Π-GSP and MIN-Π-GSP. We prove that MIN-(2,1)-GSP is a Max-SNP-hard problem, i.e., there is a positive constant ε, such that the existence of an ε-approximative algorithm for MIN-(2,1)-GSP implies P=NP

    On the complexity of the approximation of nonplanarity parameters for cubic graphs

    Get PDF
    AbstractLet G=(V,E) be a simple graph. The NON-PLANAR DELETION problem consists in finding a smallest subset E′⊂E such that H=(V,E⧹E′) is a planar graph. The SPLITTING NUMBER problem consists in finding the smallest integer k⩾0, such that a planar graph H can be defined from G by k vertex splitting operations. We establish the Max SNP-hardness of SPLITTING NUMBER and NON-PLANAR DELETION problems for cubic graphs

    Even and odd pairs in comparability and in P4-comparability graphs

    Get PDF
    AbstractWe characterize even and odd pairs in comparability and in P4-comparability graphs. The characterizations lead to simple algorithms for deciding whether a given pair of vertices forms an even or odd pair in these classes of graphs. The complexities of the proposed algorithms are O(n + m) for comparability graphs and O(n2m) for P4-comparability graphs. The former represents an improvement over a recent algorithm of complexity O(nm)

    The complexity of clique graph recognition

    Get PDF
    A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.Facultad de Ciencias Exacta
    • …
    corecore